

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 5859–5863

Direct synthesis of protected diethyl 1,2-diaminoalkylphosphonates

Roman Błaszczyk and Tadeusz Gajda*

Institute of Organic Chemistry, Technical University of Lodz (Politechnika), Zeromskiego St. 116, 90-924 Lodz, Poland _

Received 22 March 2007; revised 4 June 2007; accepted 13 June 2007 Available online 20 June 2007

Abstract—An efficient, diastereoselective synthesis of 5-substituted (2-thioxo-imidazolidin-4-yl)phosphonic acid diethyl esters from metallated diethyl isothiocyanatomethylphosphonate and activated imines has been developed. The three-step transformation of imidazolidine-2-thione derivatives into 1,2-diaminoalkylphosphonic acids is also described. © 2007 Elsevier Ltd. All rights reserved.

Aminophosphonates^{[1,2](#page-2-0)} (phosphonate analogues of α amino acids) have received considerable attention in bioorganic chemistry due to their unique activities as peptide mimetics, such as transition state-analogue inhibitors of human rennin,^{[3](#page-2-0)} HIV protease and poly-merase,^{[4](#page-3-0)} leucine aminopeptidase^{[5](#page-3-0)} and serine proteases.^{[6](#page-3-0)} They have also been exploited as neuromodulators^{1a,b} and haptens of catalytic antibodies.1a,7 Several 1,2-diaminoalkylphosphonic acids, which can be regarded as the isosteres of α , β -diamino acids,^{[8](#page-3-0)} act as leucine aminopeptidase inhibitors.^{[9](#page-3-0)} Although a variety of strategies leading to aminophosphonates have been developed,^{1a,c,2} the number of known 1,2-diaminoalkylphosphonates is limited, 1^d and only a few routes to both racemic or enantioenriched compounds have been reported. So far these aminophosphonates are available by ring-opening of aziridine phosphonic acid derivatives^{[10–12](#page-3-0)} with nitrogen or sulfur nucleophiles and by nucleophilic substitution of dimethyl $(1R,2S)$ -2-(N,N-dibenzylamino)-1-mesyloxy-2-phenylethylphospho-nate^{[13](#page-3-0)} or optically pure diethyl $(3$ -benzyl-1,2,3-oxa-thiazolidine-2,2-dioxide)-4-phosphonate^{[14](#page-3-0)} with amines. 1,2-Diaminophosphonic acid derivatives have also been prepared by diastereoselective addition of diethyl phosphonate to chiral O-silylated N-benzylnitrones, followed by catalytic hydrogenation of the hydroxyamino phosphonates thus formed.[15](#page-3-0) Both enantiomers of 1-substituted 1-amino-2-methylaminoethylphosphonic acids can be prepared by stereoselective alkylation of (2-tert-

butyl-1-methyl-5-oxo-imidazolidin-4-yl)phosphonic or imidazolidinephosphonic acid dimethyl esters with organic halides, followed by reduction and acid hydrolysis.¹⁶ In turn, enantiopure $(2R,3R)$ -2,3-diamino-3phosphonopropanoic acid has been obtained from the corresponding dimethyl (2R,3R)-4-oxo-3-phthalimido-azetidin-2-ylphosphonate^{[17](#page-3-0)} by acid hydrolysis.

Recently, we described the efficient and diastereoselective transformations of diethyl isothiocyanatomethylphosphonate[18](#page-3-0) (1) into diethyl N-Boc 1-amino-2-hydr oxy alkylphosphonates^{[19](#page-3-0)} and diethyl N-Boc 1-amino-1-alkenylphosphonates^{[20](#page-3-0)} via intermediate oxazolidine-2-thiones.

Herein we report further investigations in this area, utilizing diethyl isothiocyanatomethylphosphonate (1) and imines 2 for the synthesis of 4-phosphorylated imidazolidine-2-thiones, which can be regarded as masked diethyl 1,2-diaminoalkylphosphonates. It seems reasonable that imidazolidine-2-thiones can be useful intermediates for the synthesis of 1,2-diaminoalkylphosphonic acids (Scheme 1).

To the best of our knowledge, 1,2-diaminoalkylphos-phonic acids^{[21](#page-3-0)} have not been obtained using this methodology^{22} methodology^{22} methodology^{22} and the synthesis of cyclic thioureas via

Scheme 1. Retrosynthesis of 1,2-diaminoalkylphosphonic acids from isothiocyanate 1 and imines 2.

Keywords: Nucleophilic addition; Imines; Imidazolidine-2-thiones; 1,2 diaminoalkylphosphonic acids; Diethyl isothiocyanatomethylphosphonate; Isothiocyanates.

^{*} Corresponding author. Tel.: +48 42 631 3146; fax: +48 42 636 5530; e-mail: tmgajda@p.lodz.pl

^{0040-4039/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.06.063

Scheme 2. Reagents and conditions: (i) method A: NaH (1.2 equiv), THF, $-5-0$ °C, 0.5 h, followed by aq NH₄Cl; method B: *t*-BuOK (1.2 equiv), THF, $0-5$ °C, 0.5 h, followed by brine; method C: t-BuOK (1.2 equiv), THF, -75 °C, 2 h, followed by brine; method D: NaHMDS (1.2 equiv), THF, -75 °C, 2 h, followed by brine at -75 °C; (ii) method E: NaH (2.2 equiv), THF, 25–30 °C, 2.5 h, followed by aq NH₄Cl at 5 °C.

Table 1. Substituted imidazolidine-2-thiones 5a–j prepared

Entry	Compd. 5	R ¹	R^2	Method	Yield ^a $(\%)$	trans:cis ^b	³¹ P NMR δ (ppm) trans/cis
	a	(EtO) ₂ P(O)	Ph	A	92	39:61	-3.72 , 18.16/ -3.82 , 15.28
	b	(EtO) ₂ P(O)	p -MeC ₆ H ₄	A	87	38:62	$-3.73, 18.21/-3.84, 15.16$
				B	64	92:8	
4	$\mathbf c$	(EtO) ₂ P(O)	p -MeOC ₆ H ₄	A	76	36:64	-3.78 , 18.21/ -4.21 , 15.49
				B	48	96:4	
6	d	Ts	Ph	A	37	50:50	16.80/14.60
	e	H ^c	Ph	C	70	90:10	18.46/16.42
8		H ^c	Et	C	55	87:13	19.24/18.21
9	g	Boc	Ph	B	51	91:9	18.06/15.39
10				D	67	46:54	
11				E^d	67	52:48	
12	h	Boc	o -MeC ₆ H ₄	D	49	44:56	17.95/15.56
13				E^d	35	39:61	
14		Boc	p -MeC ₆ H ₄	E^d	64	56:44	17.88/15.24
15		Boc	2-Furyl	E^d	28	50:50	18.43/14.91

^a Yields of pure, isolated products.
^b Diastereomer ratios measured by ³¹P NMR (101 MHz, CDCl₃) of the crude products.

 $^{\circ}$ N-(p-Toluenelsulfinyl) imines 2e and 2f were used as substrates (entries 7 and 8, respectively). Deprotection of the sulfinyl moiety occurred under the standard work-up procedure.

 d Sulfones 3g–j were applied as synthetic equivalents of N-Boc imines (entries 11, 13–15).

intramolecular cyclization of isothiocyanate derivatives is rarely reported.[8,23](#page-3-0)

Several N-(diethoxyphosphoryl) imines^{[24](#page-3-0)} 2a–c, N-(p-tol-uenesulfonyl) imine^{[25](#page-3-0)} 2d, N-(p-toluenesulfinyl) imines^{[26](#page-3-0)} 2e–f, N-Boc imines^{[27](#page-3-0)} 2g–h as well as N-Boc- α -amido-alkyl-p-tolylsulfones^{[28](#page-3-0)} 3g–j, which can be considered as a stable equivalents of N-Boc imines, were utilized as model electrophiles. The metallated diethyl isothiocyanatomethylphosphonate, prepared by deprotonation of 1 with the appropriate base (NaH, t-BuOK, NaH-MDS), was allowed to react with imines 2a–h or their precursors 3g–j under conditions depending on the method used. In each case, the intermediate anion 4 formed by the initial addition participated in an intramolecular addition with the isothiocyanate function to give a mixture of racemic trans- and cis-imidazolidine- 2 -thiones^{[29](#page-3-0)} 5 (Scheme 2). The results are summarized in Table 1.

The results given in Table 1 indicate that adducts 5 are formed in moderate to excellent yields (28–92%). Diastereomeric mixtures of 5 could be easily separated into trans-5 and cis-5 isomers by flash chromatography on silica gel. The presented methodology is limited to aromatic aldehyde derived imines, except for N-sulfinyl imines, for which aliphatic analogue 2f is also applicable. Additionally, in the case of imines 2e and 2f, depro-tection of the sulfinyl group on nitrogen took place^{[30](#page-4-0)} under the standard work-up procedure, and the final products were isolated as free thioureas 5e and 5f.[†]

The diastereoselectivity of the reactions was base-dependent and, in principle, independent of the imines used. Thus, when NaH and NaHMDS were used as bases, thioureas 5 were formed with low diastereoselectivity (Table 1, methods A, D or E, entries 1, 2, 4 and 10– 14) or formed in a non stereoselective manner (Table 1, methods A or E, entries 6 and 15). When potassium tert-butoxide was employed for metallation, high trans-diastereoselectivity (up to 92:8) was observed (Table 1, methods B and C, entries 3, 5 and 7–9). At this point, however, it is difficult to rationalize these differences.

The stereochemistry of the imidazolidine-2-thiones 5 was determined by NOE difference experiments as well

[†]When anhydrous AcOH or aq NaHSO₄ was used for quenching the reaction mixture, partial cleavage of the sulfinyl group occurred and a mixture of N-sulfinyl and free thioureas 5e and 5f was formed.

Scheme 3. Reagents and conditions: (i) Boc₂O (1.15 equiv), DMAP (0.2 equiv), CH₂Cl₂, rt, 3 h; (ii) Hg(OAc)₂ (1.26 equiv), CH₂Cl₂, rt, 24 h; (iii) concd HCl/MeOH (8:1 v/v), reflux, 11 h.

as by examination of the vicinal coupling constants (J_{4-5}) of the ring protons H-4 and H-5. For compound cis-5i, irradiation of H-5 produced a 15.7% enhancement of the signal of H-4, indicating a cis relationship between those protons on the imidazolidine-2-thione ring. For compound trans-5i, irradiation of H-5 showed a 5.9% enhancement of the signal of H-4.

In addition, the estimated values of the vicinal coupling constants, 3.84 Hz for trans-5i and 9.02 Hz for cis-5i, are consistent with the observation that trans-imidazolidine-2-thiones^{[31](#page-4-0)} as well as *trans*-imidazolidine-2-ones^{[32](#page-4-0)} have smaller coupling constants than the corresponding *cis*diastereomers. The same correlation has also been established for oxazolidine-2-one and oxazolidine-2-thione ring systems.[19,33](#page-3-0) The stereochemistry of the remaining thioureas 5 was determined by comparison of the vicinal coupling constants of the major and minor isomers.

Additionally, the phosphorus chemical shifts of 5 were consistent with the appropriate given diastereomer. In the 31P NMR spectra of all imidazolidine-2-thiones 5 the signals of the trans isomers appeared 2.2–3.5 ppm downfield relative to those of the cis isomers [\(Table 1\)](#page-1-0).

Having established the synthesis of 4-phosphorylated imidazolidine-2-thiones 5, we focused our attention on their conversion into 1,2-diaminoalkylphosphonic acids 8 (Scheme 3). A three-step transformation of 5 into acids 8 was investigated, as direct hydrolysis of the imidazolidine-2-thione ring failed.

Thus, a mixture of *trans*- and *cis*-adducts 5g, selected as model compounds, was separated chromatographically on silica gel to give pure trans- and cis-5g in 30% and 32% yields, respectively. Using the standard proce-dure,^{[34](#page-4-0)} N-protection of *cis*-4-(diethoxyphosphoryl)-5phenyl-2-thioxo-imidazolidine-1-carboxylic acid tert-butyl ester 5g was achieved with di-tert-butyldicarbonate in the presence of DMAP to give fully protected cis-6g in 97% yield. Oxidative desulfuration of cis-6g using mercury(II) acetate^{[35](#page-4-0)} in dichloromethane solution provided cis-4-(diethoxyphosphoryl)-2-oxo-5-phenyl-imidazolidine-1,3-dicarboxylic acid di-tert-butyl ester 7g in 95% yield. Finally, acid-catalyzed ring-opening of

cis-7g was accomplished using concentrated hydrochloric acid in methanol (8.1 v/v) .^{32g,36} The desired *anti*-1,2-diamino-2-phenyl-ethylphosphonic acid 8g was isolated in 96% yield as the dihydrochloride. The anti-8b diastereomer was obtained from cis-5b in 50% overall yield in the same way. The same sequence of reactions as above afforded syn-8g from trans-5g in 68% overall yield.

In summary, we have demonstrated that diastereoselective addition of diethyl isothiocyanatomethylphosphonate (1) to activated imines 2 affords 1,2 diaminoalkylphosphonates 5, masked as cyclic thioureas. An efficient, three-step transformation of the adducts 5 into 1,2-diaminoalkylphosphonic acid dihydrochlorides 8 was also developed.

Studies to adapt this methodology for the synthesis of optically active 1,2-diaminoalkylphosphonic acids, using optically pure N-sulfinyl imines as chiral auxiliaries, are underway and will be reported in due course.

References and notes

- 1. (a) Aminophosphonic and Aminophosphinic Acids Chemistry and Biological Activity; Kukhar, V. P., Hudson, H. R., Eds.; John Wiley: Chichester, 2000; (b) Kafarski, P.; Mastalerz, P. In Aminophosphonates: Natural Occurrence, Biochemistry and Biological Properties; Beiträge zur Wirkstofforschung: Berlin, Germany, 1984; Vol. 21; (c) Mikołajczyk, M.; Drabowicz, J.; Łyżwa, P. In Asymmetric Synthesis of Phosphonic Analogs of β -Amino Acids; Juaristi, E., Soloshonok, V. A., Eds.; Enantioselective synthesis of β -amino acids; John Wiley: Hoboken, NJ, 2005; pp 261–276; (d) Palacios, F.; Alonso, C.; De Los Santos, J. In Asymmetric Synthesis of α -Substituted- β -Amino Phosphonates and Phosphinates and β -Amino Sulfur Analogs; Juaristi, E., Soloshonok, V. A., Eds.; Enantioselective Synthesis of β -Amino Acids; John Wiley: Hoboken, NJ, 2005; pp 292–294.
- 2. For recent reviews, see: (a) Palacios, F.; Alonso, C.; de los Santos, J. M. Chem. Rev. 2005, 105, 899; (b) Moonen, K.; Laureyn, I.; Stevens, Ch. V. Chem. Rev. 2004, 104, 6177.
- 3. Tao, M.; Bihovsky, R.; Wells, G. J.; Mallamo, J. P. J. Med. Chem. 1998, 41, 3912.
- 4. (a) Stowasser, B.; Budt, K.-H.; Li, J.-Q.; Peyman, A.; Ruppert, D. Tetrahedron Lett. 1992, 33, 6625; (b) Ikeda, J. A.; Ashley, J. A.; Wirsching, P.; Janda, K. D. J. Am. Chem. Soc. 1992, 114, 7604.
- 5. Giannousis, P. P.; Bartlett, P. A. J. Med. Chem. 1987, 30, 1603.
- 6. Oleksyszyn, J.; Powers, J. C. In Methods in Enzymology; Academic Press, 1994; Vol. 244, pp 423–441.
- 7. (a) Lerner, R. A. Acc. Chem. Res. 1993, 26, 391; (b) Hirschmann, R.; Smith, A. B., III; Taylor, C. M.; Benkovic, P. A.; Taylor, S. D.; Yager, K. M.; Sprengler, P. A.; Benkovic, S. J. Science 1994, 265, 234; (c) Smithrud, D. B.; Benkovic, P. A.; Benkovic, S. J.; Taylor, C. M.; Yager, K. M.; Witherington, J.; Philips, B. W.; Sprengler, P. A.; Smith, A. B., III; Hirschmann, R. J. Am. Chem. Soc. 1997, 119, 278.
- 8. Viso, A.; de la Pradilla, R. F.; Garcia, A.; Flores, A. Chem. Rev. 2005, 105, 3167.
- 9. Lejczak, B.; Kafarski, P.; Zygmunt, J. Biochemistry 1989, 28, 3549.
- 10. Zygmunt, J. Tetrahedron 1985, 41, 4979.
- 11. Dolence, E. K.; Roylance, J. B. Tetrahedron: Asymmetry 2004, 15, 3307.
- 12. Li, B.-F.; Zhang, M.-J.; Hou, X.-L.; Dai, L.-X. J. Org. Chem. 2002, 67, 2902.
- 13. Piotrowska, D. G.; Wróblewski, A. Tetrahedron 2003, 59, 8405.
- 14. Dolence, E. K.; Mayer, G.; Kelly, B. D. Tetrahedron: Asymmetry 2005, 16, 1583.
- 15. (a) De Risi, C.; Dondoni, A.; Perrone, D.; Pollini, G. P. Tetrahedron Lett. 2001, 42, 3033; (b) De Risi, C.; Perrone, D.; Dondoni, A.; Pollini, G. P.; Bertolas, V. Eur. J. Org. Chem. 2003, 1904.
- 16. Studer, A.; Seebach, D. Heterocycles 1995, 40, 357.
- 17. (a) Campbell, M. M.; Carruthers, N. J. Chem. Soc., Chem. Commun. 1980, 730; (b) Campbell, M. M.; Carruthers, N. I.; Mickel, S. J. Tetrahedron 1982, 38, 2513.
- 18. Sikora, D.; Gajda, T. Phosphorus, Sulfur Silicon 2000, 157, 201.
- 19. Błażewska, K.; Sikora, D.; Gajda, T. Tetrahedron Lett. 2003, 44, 4747.
- 20. Błażewska, K.; Gajda, T. Tetrahedron 2004, 60, 11701.
- 21. Presented in part: Błaszczyk, R.; Gajda, T. Abstracts of Papers, 48th National Meeting of the Polish Chemical Society, Poznań, Poland, Sep 18–22, 2005; Polish Chemical Society: Warsaw, Poland, 2005.
- 22. For fluoride-catalyzed reactions of trimethylsilylmethyl isothiocyanate with benzylideneaniline, see: Hirao, T.; Yamada, A.; Hayashi, K.; Ohshiro, Y.; Agawa, T. Bull. Chem. Soc. Jpn. 1982, 55, 1163.
- 23. For examples of intramolecular cyclization using isothiocyanates, see: (a) Gonda, J.; Martinková, M.; Imrich, J. Tetrahedron 2002, 58, 1611; (b) Martinková, M.; Gonda, J. Tetrahedron Lett. 1997, 38, 875; (c) Griffiths, D.; Hull, R.; Seden, T. P. J. Chem. Soc., Perkin Trans. 1 1980, 1240; (d) Ogura, H.; Takeda, K.; Kajima, K. Chem. Pharm. Bull. 1978, 26, 1688.
- 24. Zwierzak, A.; Napieraj, A. Tetrahedron 1996, 52, 8789.
- 25. Chemla, F.; Hebbe, V.; Normant, J.-F. Synthesis 2000, 75.
- 26. Higashibayashi, S.; Tohmiya, H.; Mori, T.; Hashimoto, K.; Nakata, M. Synlett 2004, 457.
- 27. Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964.
- 28. (a) Petrini, M. Chem. Rev. 2005, 105, 3949; (b) Engeberts, J. B. F. N.; Strating, J. Recl. Trav. Chim. Pays-Bas 1965, 84, 942; (c) Kanazawa, A. M.; Denis, J.-N.; Greene, A. E. J. Org. Chem. 1994, 59, 1238; (d) Klepacz, A.; Zwierzak, A. Tetrahedron Lett. 2002, 43, 1079.

29. General procedures for the preparation of imidazolidine-2 thiones 5

Method A: A solution of 1 (0.209 g, 1.0 mmol) and imine 2 (1.0 mmol) in dry THF (2 mL) was added dropwise at -5 °C to a suspension of NaH (0.029 g, 1.2 mmol) in THF (6 mL). The mixture was stirred for 30 min at -5 to 0 °C and the reaction was quenched with a saturated aq solution of $NH₄Cl$ (2 mL). The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 $(2 \times 20 \text{ mL})$. The combined organic layers were washed successively with saturated aq NH₄Cl $(2 \times 2$ mL), water $(2 mL)$, then dried $(MgSO₄)$ and concentrated under reduced pressure to give crude imidazolidine-2-thiones 5. Analytically pure trans and cis isomers of 5 were isolated after flash chromatography on silica gel.

Method B: A solution of $1(0.209 \text{ g}, 1.0 \text{ mmol})$ and imine 2 (1.0 mmol) in THF (2 mL) was added dropwise at 0° C to a solution of t -BuOK (0.135 g, 1.2 mmol) in THF (6 mL). The mixture was stirred for $0.5 h$ at $0 °C$ and then quenched with brine (2 mL). The product was isolated via the procedure given above.

Method C: To a cooled -75° C solution of *t*-BuOK $(0.135 \text{ g}, 1.2 \text{ mmol})$ in THF (6 mL) a solution of 1 $(0.209 \text{ g}, 1.0 \text{ mmol})$ and imine 2 (1.0 mmol) in THF (2 mL) was added dropwise. The mixture was stirred for 2 h at -75 °C and then quenched with brine (2 mL). The product was isolated via the procedure given above.

Method D: To a cooled -75° C solution of NaHMDS $(0.220 \text{ g}, 1.2 \text{ mmol})$ in THF (6 mL) a solution of 1 $(0.209 \text{ g}, 1.0 \text{ mmol})$ and imine 2 (1.0 mmol) in THF (2 mL) was added dropwise. The mixture was stirred for 2 h at -75 °C and then quenched with brine (2 mL). The product was isolated via the procedure given above.

Method E: Powdered sulfone 3 (1 mmol) was added in one portion at rt to a suspension of NaH (0.058 g, 2.2 mmol) in dry THF (8 mL). A solution of 1 (0.209 g, 1 mmol) in THF (2 mL) was then added dropwise. The resulting mixture was stirred at 25–30 °C for 2.5 h, cooled to 5 °C and quenched with satd aq $NH₄Cl$ (1 mL). The product was isolated via the procedure given above.

The results are summarized in [Table 1.](#page-1-0) All new compounds were fully characterized. Satisfactory elemental analyses were obtained for all new compounds.

Selected data: trans/cis-5g: Yield: 67% (method D, trans/ $cis = 46/54$. The mixture was separated by flash chromatography on silica gel (AcOEt/hexane, 8:1) to give cis-5g (mp = 155–157 °C) in 30% yield and *trans*-5g (viscous oil) in 32% yield, respectively.

cis-5g: ^fH NMR (250 MHz, CDCl₃): δ 1.03 (t, ³J_{HH} = 7.00 Hz, 3H, CH₃), 1.16–1.25 (m, 12H, CH₃ + (CH₃)₃C), 3.19–3.32 (m, 1H, CH₂O), 3.54–3.67 (m, 1H, CH₂O),
3.90–4.02 (m, 2H, CH₂O), 4.49 (dd, ³J_{HH} = 9.25 Hz,
²J_{HP} = 7.71 Hz, 1H, CHP), 5.66 (dd, ³J_{HH} = 9.25 Hz,
³J_{HP} = 5.51 Hz, 1H, CHCHP), 6.96 (bs, 1H), 7.3 ${}^{3}J_{\text{CP}} = 3.66 \text{ Hz}$), 16.3 (d, ${}^{3}J_{\text{CP}} = 6.09 \text{ Hz}$), 27.6, 55.4 (d, ${}^{1}J_{\text{CP}} = 170.56 \text{ Hz}$), 62.8 (d, ${}^{2}J_{\text{CP}} = 6.09 \text{ Hz}$), 62.9 (d, ${}^{2}J_{\text{CP}} =$ 7.31 Hz), 64.3, 83.5, 127.6, 128.7, 129.1, 136.5 (d, ${}^{3}J_{CP} = 6.09$ Hz), 149.1, 181.6 (d, ${}^{3}J_{CP} = 12.18$ Hz); ${}^{31}P$ NMR (101 MHz, CDCl₃): δ 15.39; MS-FAB m/z (%): 413.4 (100%), M-H⁺; Anal. Calcd for C₁₈H₂₇N₂O₅PS (414.46): C, 52.16; H, 6.57; N, 6.76. Found: C, 51.91; H, 6.64; N, 6.42.

trans-5g: ¹H NMR (250 MHz, CDCl₃): δ 1.29 (s, 9H, $(CH_3)_3C$, 1.36 (t, ${}^3J_{HH} = 7.25$ Hz, $3H$, CH_3), 1.37 (t, ${}^3J_{HH} = 7.25$ Hz, 3H, CH_3), 3.79 (d, ${}^3J_{HH} = 3.75$ Hz, 1H, CH_2), CH_2), 4.25 (quin, ${}^3J_{HH} = {}^3J_{HP} = 6.75$ Hz, 4H, CH_2O),

5.55 (dd, ${}^{3}J_{\text{HH}} = 3.75 \text{ Hz}, {}^{3}J_{\text{HP}} = 19.65 \text{ Hz}, 1 \text{H}, CHCHP$), 7.24–7.29 (m, 2H, Har), 7.31–7.40 (m, 3H, Har), 7.53 (bs, 1H); ¹³C NMR (63 MHz, CDCl₃): δ 16.5 (d, ³J_{CP} = 6.09 Hz), 16.6 (d, ³J_{CP} = 6.09 Hz), 27.7, 57.9 (d, ¹J_{CP} = 158.4 Hz), 63.6 (d, ²J_{CP} = 7.31 Hz), 64.0, 64.2 (d, ²J_{CP} = 7.31 Hz), 83.5 125.6 128.2 12 $J_{\text{CP}} = 7.31 \text{ Hz}$, 83.5, 125.6, 128.2, 128.6, 140.6 (d, $J_{\text{CP}} = 12.18 \text{ Hz}$), 149.4, 178.4 (d, $J_{\text{CP}} = 10.96 \text{ Hz}$); ${}^{31}P$ NMR (101 MHz, CDCl₃): δ 18.06; MS-FAB m/z (%): 413.4 (100%), M-H⁺; Anal. Calcd for C₁₈H₂₇N₂O₅PS (414.46): C, 52.16; H, 6.57; N, 6.76. Found: C, 51.87; H, 6.81; N, 6.51.

anti-8g: Overall yield: 88% ; yellow solid (mp = 230– 236 °C); ¹H NMR (250 MHz, D₂O): δ 3.79 (bt, 236 °C); ¹H NMR (250 MHz, D₂O): δ 3.79 (bt, ${}^{3}J_{\text{HH}} \approx {}^{2}J_{\text{HP}} \approx 11.65 \text{ Hz}$, 1H₂ CHP), 4.48–4.59 (m, 1H, CHC_{arom}), 7.45 (s, 5H_{arom}); ¹³C NMR (63 MHz, D₂O): δ 47.5 (d, $J_{CP} = 131.57 \text{ Hz}$), 51.9, 126.3, 128.4, 129.0 (d, $J_{CP} = 12.18 \text{ Hz}$), 129.3; ³¹P NMR (101 MHz, D₂O): δ 9.59; MS-FAB m/z (%): 217.1 (70%), M⁺-2HCl; Anal. Calcd for $C_8H_{15}Cl_2N_2O_3P$ (289.10): C, 33.24; H, 5.23; N, 9.69. Found: C, 33.62; H, 5.51; N, 9.91.

syn-8g: Overall yield: 68%; white solid (mp = 248–253 °C); ¹H NMR (250 MHz, D₂O): δ 3.91 (dd, ³J_{HH} = 5.71 Hz,

²J_{HP} = 14.73 Hz, 1H, CHP), 4.90 (dd, ³J_{HH} = 5.71 Hz,

³J_{HP} = 16.68 Hz, 1H, CHC, \geq 7.48 (c, 5H), ¹³C $J_{\text{HP}} = 16.68 \text{ Hz}, \text{ 1H}, \text{ } CHC_{\text{arom}}^{\text{}}$, 7.48 (s, 5H_{arom}); ¹³C NMR (63 MHz, D₂O): δ 48.0 (d, ¹J_{CP} = 134.01 Hz), 51.7, 125.8, 127.7, 128.5, 128.7 (d, ³J_{CP} = 4.87 Hz); ³¹P NMR (101 MHz, D₂O): δ 8.57; MS-FAB m/z (%): 217.1 (74%), M^+ –2HCl; Anal. Calcd for C₈H₁₅Cl₂N₂O₃P (289.10): C, 33.24; H, 5.23; N, 9.69. Found: C, 33.59; H, 5.62; N, 10.00.

- 30. Evans, D. A.; Faul, M. M.; Colombo, L.; Bisaha, J. J.; Clardy, J.; Cherry, D. J. Am. Chem. Soc. 1992, 114, 5977.
- 31. Davies, S. G.; Evans, G. B.; Pearce, S. Tetrahedron 1994, 50, 7521.
- 32. (a) Yoo, D.; Kwon, S.; Kim, Y. G. Tetrahedron: Asymmetry 2005, 16, 3762; (b) Oshitari, T.; Akagi, R.; Mandai, T. Synthesis 2004, 1325; (c) Ambroise, L.; Dumez, E.; Szeki, A.; Jackson, F. W. Synthesis 2002, 2296; (d) Hirabayashi, R.; Ogawa, C.; Sugiura, M.; Kobayashi, S. J. Am. Chem. Soc. 2001, 123, 9493; (e) Lucet, D.; Heyse, P.; Gissot, A.; Le Gall, T.; Mioskowski, C. Eur. J. Org. Chem. 2000, 3575; (f) Doherty, A. M.; Kornberg, B. E.; Reily, M. D. J. Org. Chem. 1993, 58, 795; (g) Dunn, P. J.; Häner, R.; Rapoport, H. J. Org. Chem. 1990, 55, 5017; (h) Mikroyannidis, J. A.; Tsolis, A. K. J. Heterocycl. Chem. 1982, 19, 1179.
- 33. For selected examples, see: (a) Hoppe, D.; Follmann, R. Chem. Ber. 1976, 109, 3047; (b) Evans, D. A.; Weber, A. E. J. Am. Chem. Soc. 1986, 108, 6757; (c) Yokomatsu, T.; Yamagishi, T.; Shibuya, S. Tetrahedron: Asymmetry 1993, 4, 1401; (d) McClure, C. K.; Mishra, P. K.; Grote, C. W. J. Org. Chem. 1997, 62, 2437.
- 34. Schmidt, U.; Leitenberger, V.; Griesser, H.; Schmidt, J.; Meyer, R. Synthesis 1992, 1248.
- 35. (a) Davies, S. G.; Mortlock, A. A. Tetrahedron Lett. 1991, 32, 4791; (b) Davies, S. G.; Evans, G. B.; Pearce, S. Tetrahedron 1994, 50, 7521.
- 36. Cardillo, G.; Orena, M.; Penna, M.; Sandri, S.; Tomasini, C. Tetrahedron 1991, 47, 2263.