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Direct synthesis of protected diethyl 1,2-diaminoalkylphosphonates
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Abstract—An efficient, diastereoselective synthesis of 5-substituted (2-thioxo-imidazolidin-4-yl)phosphonic acid diethyl esters from
metallated diethyl isothiocyanatomethylphosphonate and activated imines has been developed. The three-step transformation of
imidazolidine-2-thione derivatives into 1,2-diaminoalkylphosphonic acids is also described.
� 2007 Elsevier Ltd. All rights reserved.
Aminophosphonates1,2 (phosphonate analogues of a-
amino acids) have received considerable attention in
bioorganic chemistry due to their unique activities as
peptide mimetics, such as transition state-analogue
inhibitors of human rennin,3 HIV protease and poly-
merase,4 leucine aminopeptidase5 and serine proteases.6

They have also been exploited as neuromodulators1a,b

and haptens of catalytic antibodies.1a,7 Several 1,2-di-
aminoalkylphosphonic acids, which can be regarded
as the isosteres of a,b-diamino acids,8 act as leucine
aminopeptidase inhibitors.9 Although a variety of
strategies leading to aminophosphonates have been
developed,1a,c,2 the number of known 1,2-diamino-
alkylphosphonates is limited,1d and only a few routes
to both racemic or enantioenriched compounds have
been reported. So far these aminophosphonates are
available by ring-opening of aziridine phosphonic acid
derivatives10–12 with nitrogen or sulfur nucleophiles
and by nucleophilic substitution of dimethyl (1R,2S)-2-
(N,N-dibenzylamino)-1-mesyloxy-2-phenylethylphospho-
nate13 or optically pure diethyl (3-benzyl-1,2,3-oxa-
thiazolidine-2,2-dioxide)-4-phosphonate14 with amines.
1,2-Diaminophosphonic acid derivatives have also been
prepared by diastereoselective addition of diethyl phos-
phonate to chiral O-silylated N-benzylnitrones, followed
by catalytic hydrogenation of the hydroxyamino phos-
phonates thus formed.15 Both enantiomers of 1-substi-
tuted 1-amino-2-methylaminoethylphosphonic acids
can be prepared by stereoselective alkylation of (2-tert-
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butyl-1-methyl-5-oxo-imidazolidin-4-yl)phosphonic or
imidazolidinephosphonic acid dimethyl esters with
organic halides, followed by reduction and acid hydro-
lysis.16 In turn, enantiopure (2R,3R)-2,3-diamino-3-
phosphonopropanoic acid has been obtained from the
corresponding dimethyl (2R,3R)-4-oxo-3-phthalimido-
azetidin-2-ylphosphonate17 by acid hydrolysis.

Recently, we described the efficient and diastereoselec-
tive transformations of diethyl isothiocyanatomethyl-
phosphonate18 (1) into diethyl N-Boc 1-amino-2-hydr-
oxyalkylphosphonates19 and diethyl N-Boc 1-amino-1-
alkenylphosphonates20 via intermediate oxazolidine-
2-thiones.

Herein we report further investigations in this area,
utilizing diethyl isothiocyanatomethylphosphonate (1)
and imines 2 for the synthesis of 4-phosphorylated
imidazolidine-2-thiones, which can be regarded as
masked diethyl 1,2-diaminoalkylphosphonates. It seems
reasonable that imidazolidine-2-thiones can be useful
intermediates for the synthesis of 1,2-diaminoalkylphos-
phonic acids (Scheme 1).

To the best of our knowledge, 1,2-diaminoalkylphos-
phonic acids21 have not been obtained using this
methodology22 and the synthesis of cyclic thioureas via
Scheme 1. Retrosynthesis of 1,2-diaminoalkylphosphonic acids from
isothiocyanate 1 and imines 2.
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Scheme 2. Reagents and conditions: (i) method A: NaH (1.2 equiv), THF, �5–0 �C, 0.5 h, followed by aq NH4Cl; method B: t-BuOK (1.2 equiv),
THF, 0–5 �C, 0.5 h, followed by brine; method C: t-BuOK (1.2 equiv), THF, �75 �C, 2 h, followed by brine; method D: NaHMDS (1.2 equiv), THF,
�75 �C, 2 h, followed by brine at �75 �C; (ii) method E: NaH (2.2 equiv), THF, 25–30 �C, 2.5 h, followed by aq NH4Cl at 5 �C.

Table 1. Substituted imidazolidine-2-thiones 5a–j prepared

Entry Compd. 5 R1 R2 Method Yielda (%) trans:cisb 31P NMR d (ppm) trans/cis

1 a (EtO)2P(O) Ph A 92 39:61 �3.72, 18.16/�3.82, 15.28
2 b (EtO)2P(O) p-MeC6H4 A 87 38:62 �3.73, 18.21/�3.84, 15.16
3 B 64 92:8
4 c (EtO)2P(O) p-MeOC6H4 A 76 36:64 �3.78, 18.21/�4.21, 15.49
5 B 48 96:4
6 d Ts Ph A 37 50:50 16.80/14.60
7 e Hc Ph C 70 90:10 18.46/16.42
8 f Hc Et C 55 87:13 19.24/18.21
9 g Boc Ph B 51 91:9 18.06/15.39

10 D 67 46:54
11 Ed 67 52:48
12 h Boc o-MeC6H4 D 49 44:56 17.95/15.56
13 Ed 35 39:61
14 i Boc p-MeC6H4 Ed 64 56:44 17.88/15.24
15 j Boc 2-Furyl Ed 28 50:50 18.43/14.91

a Yields of pure, isolated products.
b Diastereomer ratios measured by 31P NMR (101 MHz, CDCl3) of the crude products.
c N-(p-Toluenelsulfinyl) imines 2e and 2f were used as substrates (entries 7 and 8, respectively). Deprotection of the sulfinyl moiety occurred under the

standard work-up procedure.
d Sulfones 3g–j were applied as synthetic equivalents of N-Boc imines (entries 11, 13–15).

� When anhydrous AcOH or aq NaHSO4 was used for quenching the
reaction mixture, partial cleavage of the sulfinyl group occurred and a
mixture of N-sulfinyl and free thioureas 5e and 5f was formed.
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intramolecular cyclization of isothiocyanate derivatives
is rarely reported.8,23

Several N-(diethoxyphosphoryl) imines24 2a–c, N-(p-tol-
uenesulfonyl) imine25 2d, N-(p-toluenesulfinyl) imines26

2e–f, N-Boc imines27 2g–h as well as N-Boc-a-amido-
alkyl-p-tolylsulfones28 3g–j, which can be considered as
a stable equivalents of N-Boc imines, were utilized as
model electrophiles. The metallated diethyl isothio-
cyanatomethylphosphonate, prepared by deprotonation
of 1 with the appropriate base (NaH, t-BuOK, NaH-
MDS), was allowed to react with imines 2a–h or their
precursors 3g–j under conditions depending on the
method used. In each case, the intermediate anion 4
formed by the initial addition participated in an intra-
molecular addition with the isothiocyanate function to
give a mixture of racemic trans- and cis-imidazolidine-
2-thiones29 5 (Scheme 2). The results are summarized
in Table 1.

The results given in Table 1 indicate that adducts 5 are
formed in moderate to excellent yields (28–92%). Diaste-
reomeric mixtures of 5 could be easily separated into
trans-5 and cis-5 isomers by flash chromatography on
silica gel. The presented methodology is limited to
aromatic aldehyde derived imines, except for N-sulfinyl
imines, for which aliphatic analogue 2f is also applica-
ble. Additionally, in the case of imines 2e and 2f, depro-
tection of the sulfinyl group on nitrogen took place30

under the standard work-up procedure, and the final
products were isolated as free thioureas 5e and 5f.�

The diastereoselectivity of the reactions was base-depen-
dent and, in principle, independent of the imines used.
Thus, when NaH and NaHMDS were used as bases,
thioureas 5 were formed with low diastereoselectivity
(Table 1, methods A, D or E, entries 1, 2, 4 and 10–
14) or formed in a non stereoselective manner (Table
1, methods A or E, entries 6 and 15). When potassium
tert-butoxide was employed for metallation, high
trans-diastereoselectivity (up to 92:8) was observed
(Table 1, methods B and C, entries 3, 5 and 7–9). At this
point, however, it is difficult to rationalize these
differences.

The stereochemistry of the imidazolidine-2-thiones 5
was determined by NOE difference experiments as well



Scheme 3. Reagents and conditions: (i) Boc2O (1.15 equiv), DMAP (0.2 equiv), CH2Cl2, rt, 3 h; (ii) Hg(OAc)2 (1.26 equiv), CH2Cl2, rt, 24 h; (iii)
concd HCl/MeOH (8:1 v/v), reflux, 11 h.
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as by examination of the vicinal coupling constants
(J4�5) of the ring protons H-4 and H-5. For compound
cis-5i, irradiation of H-5 produced a 15.7% enhancement
of the signal of H-4, indicating a cis relationship
between those protons on the imidazolidine-2-thione
ring. For compound trans-5i, irradiation of H-5 showed
a 5.9% enhancement of the signal of H-4.

In addition, the estimated values of the vicinal coupling
constants, 3.84 Hz for trans-5i and 9.02 Hz for cis-5i, are
consistent with the observation that trans-imidazolidine-
2-thiones31 as well as trans-imidazolidine-2-ones32 have
smaller coupling constants than the corresponding cis-
diastereomers. The same correlation has also been esta-
blished for oxazolidine-2-one and oxazolidine-2-thione
ring systems.19,33 The stereochemistry of the remaining
thioureas 5 was determined by comparison of the vicinal
coupling constants of the major and minor isomers.

Additionally, the phosphorus chemical shifts of 5 were
consistent with the appropriate given diastereomer. In
the 31P NMR spectra of all imidazolidine-2-thiones 5
the signals of the trans isomers appeared 2.2–3.5 ppm
downfield relative to those of the cis isomers (Table 1).

Having established the synthesis of 4-phosphorylated
imidazolidine-2-thiones 5, we focused our attention on
their conversion into 1,2-diaminoalkylphosphonic acids
8 (Scheme 3). A three-step transformation of 5 into acids
8 was investigated, as direct hydrolysis of the imidazol-
idine-2-thione ring failed.

Thus, a mixture of trans- and cis-adducts 5g, selected as
model compounds, was separated chromatographically
on silica gel to give pure trans- and cis-5g in 30% and
32% yields, respectively. Using the standard proce-
dure,34 N-protection of cis-4-(diethoxyphosphoryl)-5-
phenyl-2-thioxo-imidazolidine-1-carboxylic acid tert-bu-
tyl ester 5g was achieved with di-tert-butyldicarbonate
in the presence of DMAP to give fully protected cis-6g
in 97% yield. Oxidative desulfuration of cis-6g using
mercury(II) acetate35 in dichloromethane solution pro-
vided cis-4-(diethoxyphosphoryl)-2-oxo-5-phenyl-imi-
dazolidine-1,3-dicarboxylic acid di-tert-butyl ester 7g
in 95% yield. Finally, acid-catalyzed ring-opening of
cis-7g was accomplished using concentrated hydrochlo-
ric acid in methanol (8:1 v/v).32g,36 The desired anti-
1,2-diamino-2-phenyl-ethylphosphonic acid 8g was iso-
lated in 96% yield as the dihydrochloride. The anti-8b
diastereomer was obtained from cis-5b in 50% overall
yield in the same way. The same sequence of reactions
as above afforded syn-8g from trans-5g in 68% overall
yield.

In summary, we have demonstrated that diastereo-
selective addition of diethyl isothiocyanatomethyl-
phosphonate (1) to activated imines 2 affords 1,2-
diaminoalkylphosphonates 5, masked as cyclic thio-
ureas. An efficient, three-step transformation of the
adducts 5 into 1,2-diaminoalkylphosphonic acid dihy-
drochlorides 8 was also developed.

Studies to adapt this methodology for the synthesis of
optically active 1,2-diaminoalkylphosphonic acids, using
optically pure N-sulfinyl imines as chiral auxiliaries, are
underway and will be reported in due course.
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(2 · 20 mL). The combined organic layers were washed
successively with saturated aq NH4Cl (2 · 2 mL), water
(2 mL), then dried (MgSO4) and concentrated under
reduced pressure to give crude imidazolidine-2-thiones 5.
Analytically pure trans and cis isomers of 5 were isolated
after flash chromatography on silica gel.
Method B: A solution of 1 (0.209 g, 1.0 mmol) and imine 2
(1.0 mmol) in THF (2 mL) was added dropwise at 0 �C to
a solution of t-BuOK (0.135 g, 1.2 mmol) in THF (6 mL).
The mixture was stirred for 0.5 h at 0 �C and then
quenched with brine (2 mL). The product was isolated
via the procedure given above.
Method C: To a cooled �75 �C solution of t-BuOK
(0.135 g, 1.2 mmol) in THF (6 mL) a solution of 1
(0.209 g, 1.0 mmol) and imine 2 (1.0 mmol) in THF
(2 mL) was added dropwise. The mixture was stirred
for 2 h at �75 �C and then quenched with brine (2 mL).
The product was isolated via the procedure given
above.
Method D: To a cooled �75 �C solution of NaHMDS
(0.220 g, 1.2 mmol) in THF (6 mL) a solution of 1
(0.209 g, 1.0 mmol) and imine 2 (1.0 mmol) in THF
(2 mL) was added dropwise. The mixture was stirred for
2 h at �75 �C and then quenched with brine (2 mL). The
product was isolated via the procedure given above.
Method E: Powdered sulfone 3 (1 mmol) was added in one
portion at rt to a suspension of NaH (0.058 g, 2.2 mmol)
in dry THF (8 mL). A solution of 1 (0.209 g, 1 mmol) in
THF (2 mL) was then added dropwise. The resulting
mixture was stirred at 25–30 �C for 2.5 h, cooled to 5 �C
and quenched with satd aq NH4Cl (1 mL). The product
was isolated via the procedure given above.
The results are summarized in Table 1. All new com-
pounds were fully characterized. Satisfactory elemental
analyses were obtained for all new compounds.
Selected data: trans/cis-5g: Yield: 67% (method D, trans/
cis = 46/54). The mixture was separated by flash chroma-
tography on silica gel (AcOEt/hexane, 8:1) to give cis-5g
(mp = 155–157 �C) in 30% yield and trans-5g (viscous oil)
in 32% yield, respectively.
cis-5g: 1H NMR (250 MHz, CDCl3): d 1.03 (t, 3JHH =
7.00 Hz, 3H, CH3), 1.16–1.25 (m, 12H, CH3 + (CH3)3C),
3.19–3.32 (m, 1H, CH2O), 3.54–3.67 (m, 1H, CH2O),
3.90–4.02 (m, 2H, CH2O), 4.49 (dd, 3JHH = 9.25 Hz,
2JHP = 7.71 Hz, 1H, CHP), 5.66 (dd, 3JHH = 9.25 Hz,
3JHP = 5.51 Hz, 1H, CHCHP), 6.96 (bs, 1H), 7.30–7.37
(m, 5H, Har);

13C NMR (63 MHz, CDCl3): d 16.2 (d,
3JCP = 3.66 Hz), 16.3 (d, 3JCP = 6.09 Hz,), 27.6, 55.4 (d,
1JCP = 170.56 Hz), 62.8 (d, 2JCP = 6.09 Hz), 62.9 (d, 2JCP =
7.31 Hz), 64.3, 83.5, 127.6, 128.7, 129.1, 136.5 (d,
3JCP = 6.09 Hz), 149.1, 181.6 (d, 3JCP = 12.18 Hz); 31P
NMR (101 MHz, CDCl3): d 15.39; MS-FAB m/z (%): 413.4
(100%), M�H+; Anal. Calcd for C18H27N2O5PS (414.46):
C, 52.16; H, 6.57; N, 6.76. Found: C, 51.91; H, 6.64; N,
6.42.
trans-5g: 1H NMR (250 MHz, CDCl3): d 1.29 (s, 9H,
(CH3)3C), 1.36 (t, 3JHH = 7.25 Hz, 3H, CH3), 1.37 (t,
3JHH = 7.25 Hz, 3H, CH3), 3.79 (d, 3JHH = 3.75 Hz, 1H,
CHP), 4.25 (quin, 3JHH = 3JHP = 6.75 Hz, 4H, CH2O),
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5.55 (dd, 3JHH = 3.75 Hz, 3JHP = 19.65 Hz, 1H, CHCHP),
7.24–7.29 (m, 2H, Har), 7.31–7.40 (m, 3H, Har), 7.53 (bs,
1H); 13C NMR (63 MHz, CDCl3): d 16.5 (d, 3JCP =
6.09 Hz), 16.6 (d, 3JCP = 6.09 Hz), 27.7, 57.9 (d,
1JCP = 158.4 Hz), 63.6 (d, 2JCP = 7.31 Hz), 64.0, 64.2 (d,
2JCP = 7.31 Hz), 83.5, 125.6, 128.2, 128.6, 140.6 (d,
3JCP = 12.18 Hz), 149.4, 178.4 (d, 3JCP = 10.96 Hz); 31P
NMR (101 MHz, CDCl3): d 18.06; MS-FAB m/z (%): 413.4
(100%), M�H+; Anal. Calcd for C18H27N2O5PS (414.46):
C, 52.16; H, 6.57; N, 6.76. Found: C, 51.87; H, 6.81; N,
6.51.
anti-8g: Overall yield: 88%; yellow solid (mp = 230–
236 �C); 1H NMR (250 MHz, D2O): d 3.79 (bt,
3JHH � 2JHP � 11.65 Hz, 1H, CHP), 4.48–4.59 (m, 1H,
CHCarom), 7.45 (s, 5Harom); 13C NMR (63 MHz, D2O): d
47.5 (d, 1JCP = 131.57 Hz), 51.9, 126.3, 128.4, 129.0 (d,
3JCP = 12.18 Hz), 129.3; 31P NMR (101 MHz, D2O): d
9.59; MS-FAB m/z (%): 217.1 (70%), M+�2HCl; Anal.
Calcd for C8H15Cl2N2O3P (289.10): C, 33.24; H, 5.23; N,
9.69. Found: C, 33.62; H, 5.51; N, 9.91.
syn-8g: Overall yield: 68%; white solid (mp = 248–253 �C);
1H NMR (250 MHz, D2O): d 3.91 (dd, 3JHH = 5.71 Hz,
2JHP = 14.73 Hz, 1H, CHP), 4.90 (dd, 3JHH = 5.71 Hz,
3JHP = 16.68 Hz, 1H, CHCarom), 7.48 (s, 5Harom); 13C
NMR (63 MHz, D2O): d 48.0 (d, 1JCP = 134.01 Hz), 51.7,
125.8, 127.7, 128.5, 128.7 (d, 3JCP = 4.87 Hz); 31P NMR
(101 MHz, D2O): d 8.57; MS-FAB m/z (%): 217.1 (74%),
M+�2HCl; Anal. Calcd for C8H15Cl2N2O3P (289.10): C,
33.24; H, 5.23; N, 9.69. Found: C, 33.59; H, 5.62; N,
10.00.
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